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BOTTOM SEDIMENT EFFECTS ýN A

NUMERICAL PARABOLIC EQUATION

ENSEMBLE AVERAGE PROPAGATION

Roger M. Oba

Naval Research Laboratory,

Bay Saint Louis, MS 39529-5004 USA

ABSTRACT

A method of numerically computing average pressure for an ensemble has been

developed using a normal mode analysis of the parabolic equation [1]. It has

been used to compute the transmission loss and phase for the average solutions

in the continuous wave case where the vertical variation is smoothly varying. In

this paper an alternative choice of basis functions allows one to consider sound

velocity profiles with discontinuities while preserving numerical cc nvergence.

These discontinuities arise when the sound velocity profile makes a rapid jump

between layers of differing speeds. Such a difference occurs between the water

column. and higher velocity fluid bottoms which model sediment layers. Calcu-

lations using energy loss due to sediment penetration allow better estimates of

attenuation.

INTRODUCTION

The discussion below modifies a numerical normal method for the propa-

gation of the average of the full complex field in 11]. The method propagates

the complex pressure field in terms of a vertical transform (similar to a discrete

sine transform) corresponding to eigenfunctions of a piecewise constant sound

velocity profile. First, the transform is used to re-express equations in the co-,

efficient space of a reference eigenfunction series. Because this change born the

piecewise cor~tant function to the refereWe function involves continuous differen-
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tiable functions, the convergence of series will be at least 0(1/n 2 ). Environmen-

tal fluctuation of sound speed changes the eigenfunctions, and these changes can
be expressed as orthogonal matrices. Numerical matrix routines [3] quantify the

changes and permit their evaluation, as well as eigenvalue changes. Finally, the
numerical algorithm computes average solutions, taking into account the varia-

tion due to environmental fluctuation.
The generalized parabolic equation corresponds to the rightward propagat-

ing solutions of the Helmholtz equation [2]:

(ir ~j+q+k2)u=O. .0"

The index of refraction - n • 1, and the sound speed term has jump discon-

tinuities between layers of differing speed:

q = q(z) = d(z) + qý=o(z) + q,(z) = k2 (n2(z) - 1), (2)

where 4(z) is piecewise constant, q,=o and q, are cont:nuous and differentiable.
For simplicity, the parameter 0 < c < 1. The function q is depth dependent and
range constant. The vertical and horizontal equations are, respectively

2• + q + An)ýn = 0 (3)

(0, + /A-, = A) On.0 (4)

REFERENCE VERTICAL NORMAL MODES

This section introduces a vertical sine-like transform of (3) based on 4. Here we
consider pressure release top and bottom surfaces. Collins has already used sim-

ilar boundary conditions with success in FEPE [4]. A single fluid basement of
higher velocity models sediment, although several layers may be used. (The anal-

ysis for a semi-infinite fluid b9ttom is nearly identical for the eigenvalues, but
in the continuous spectrum, it involves integro-differential equations with Hilbert

transforms.)

Since we consider only two layers the 4 profile is

{ qo, 0 < z < b
qL, b<z <h (

with 4 = qo - qt > 0 since the sediment sound speeds are higher. There are
cl.se (a) modes confined to the top flui-d and (b) modes which have significant



sediment penetration.

(a) Top confined eigenvalues have

S-qo < lin < -qj.

Use , - = - - to define •,c,, the upper layer form of the eigenvalue,

and v,•, the lower layer form. Set 1 = h - z. The eigenfunction and its derivative

are
~ so sin n, z, z <'6 fo Kn cCOS cnZ, z <bs, sinh vn, i.< b 8xn -sjv,•coshvj, i. < t

Continuity dictates matching at layer interface z = b, i b. Their'ratio is
t.__.•:•.b ~ ~ ~ ~ ~ ~ V = Nt htas-[0 ah T b; so I < n < A,, + ½, unless

ta,.~ tnh~ .Note that as v1.'0, . 2'

tan bvlq < -bv'• in which case n < A. Determine the eigenvalues numerically

by solving

Kn =(n7r -Tan- ztanhz Plb)

Normalize (where constant density has been used) 1 = flq.,,II= fq ¢•(z)dz to

find

"bsinhavJ,& - 6sin 2r nb 4sin2Ihnb]1/2
So= 2 sinh 2 Vnb 4 r,,v n

(b) For sediment penetrating eigenvalues 4 + 1 :> 0 everywhere. Thus, the top

and bottom forms of the eigenvalues are defined by/1, = r.2 - qo - q2

As before, the eigenfunction and derivative match at layer interface to give ratio
tan- - t Set b b - b. To find eigenvalues numerically, solveV, - tan Pb"

Vn ---h( bq7 11 + ý1 + (hb4)/(2j-1€".

where n = + ± (-1)n Sin- 1 ['7•-"sin Knbcos vJ]. This requires n > • and

2>+ ,n2(h) #C - b in 2,Kb -1/2
n > - . . Normalization implies so = + Asln

2 ,b + 4..J Finally,

the 0, and /in depend upon frequency through the k2 term in 4.

Consider the e independent case of q = 4I(z) 4. qo(z) in equation (3) It has

eigenfunctions On(z) and eigenvalues An. Expand these vertical cigenfunctions in

the 4 eigenfunction scries O, =-m= ThRmn. This allows the expression of thc_

differential equation in the series

O =F,'n 1 r R , (A,
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Define the inner product of velocity and 4 eigenfunctions

(qook, 0.) f qo(z),k(z)0,(z) dz.

Reformulation of the original equation (1) requires definitions of the several vec-

tors and matrices: AM,,= (OA., . ) is the matrix containing the 4 elgenfunction

transform of Ok eigenfunctions; the sound velocity profile information Is incorpo-

rated into the matri:: qo with component qo,mn = (qobm, 0,,). These now satisfy

the eigenvalue equation

A = IT(M- qo) R, A =diag(A1 , A2, ... ), (6)

where M = diag(m1 , p2, ... ) lathe diagonal matrix of 4 eigenvalues.

VERTICAL MODES IN THE ENSEMBLE

Next take an ensemble velocity profile expressed in terms of the single pa-
rameter e in q - 4 + qo + q,. The e-dependent eigenfunctions i,, of (3) may ibe
written In 0mB, series:

cn =E O1 mPimm (7)

~,-, where Pafn= (ibm, O',n). Computation of the matrix diagonalization gives

. PT(-A + RTqR)P, = -A,. (8)

A single element of the ensemble (c fixed) is a solution to

+ 02+V,+ ++qo+q %u=, o. (9)

"A,''% Express the solution u, of (9) in an eigenfunction series of the 1/, m corresponding

to 4 + + q, in (3)tU Oe Zn= lmWm.n

"The coefficient vectors for the eigenfunction series are related by RP,w, = u,.

Eq. (9) means vectors corresponding to the e parameterized eigenfunctions sat-

,' isfy the vector differential equation

a =w, = i%/rT -Aw,, (10)

where - is the diagonal matrix of horizontal eigenvalues.
- 304 --



AVERAGE SOLUTION TO THE PARABOLIC EQUATION

Linear algebra shows that P. = eA(t) where A(c) is anti-hermitian [5j. UI.dcr
suitable conditions, A(c) = cA. In this case

P, = e" A = Ucxp(fi)U, i1

where exp(e ie) = diag(e"191, e(t202, ... ) and U is a constant unitary niiatrix 6.

Eq. (10) has a solution vector

wC= .xp(iVr-2 Ar - roj)w(ro).

This is orthogonally transformed back to the 4 eigenfunctions transfnriiid m-

ficients u,. These are averaged with respect to ( to give the en-seil)le av'ragcd

with respect to c

\u,) = R (P, exp(i V 2 - A, r - r(Ji)PT RTU(,',,).

The parabolic equation (1) has an ensemble averaged solution vxt)rc.'se( in i,

of the 4 cigenfunction coefficient vectors

(u,) = (RU) (17) (RU)'u(r•1 ),

where
F = e~ eUseivy t' r-•"u-' (;

The average coupling matrix (F) has components

(r .,,) = ,=• j,

With .with, ,= /io. - O,, + ix• - A.•., -

I exp f(M 0'~~-2

where dp(() ýd is the probability density.

ATTENUATION ESTIMATES

In general, if the depth dependent attenuation codicient i.• ,3(z), then the
inodal attenuation P-6,-["-o] is given by

J = 5'(z)

- 305 -
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where K,:,, = VfTT-A [7]. For comparison, in [7]is related to /3(z) above by

inclusion of a factor of t- in f/. Computationally, one may rewrite (13) using (7)

and R to find

6' I Zk,,.'k RiP, Pk. R,'k'P, k'n B,,'

h
where Bjj, = fo #(z)0j(z).0j,(z)dz. If, for example, ' 3 is constant in the sediment

and vanishes in the water coinin. and k $ k' are in the non-penetrating spec-
trum, then B, _ js, .ih(v,-vj,). Finally, if we wish to find

the ensemble averaged attenuation 6,,7,

( E. =•-kjj'k' R k11k -kn jk,,t:,,B~j,

where kk',. = K. , f
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